Preparation and characterization of envelope membranes from nongreen plastids.
نویسندگان
چکیده
We have developed a reliable procedure for the purification of envelope membranes from cauliflower (Brassica oleracea L.) bud plastids and sycamore (Acer pseudoplatanus L.) cell amyloplasts. After disruption of purified intact plastids, separation of envelope membranes was achieved by centrifugation on a linear sucrose gradient. A membrane fraction, having a density of 1.122 grams per cubic centimeter and containing carotenoids, was identified as the plastid envelope by the presence of monogalactosyldiacylglycerol synthase. Using antibodies raised against spinach chloroplast envelope polypeptides E24 and E30, we have demonstrated that both the outer and the inner envelope membranes were present in this envelope fraction. The major polypeptide in the envelope fractions from sycamore and cauliflower plastids was identified immunologically as the phosphate translocator. In the envelope membranes from cauliflower and sycamore plastids, the major glycerolipids were monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and phosphatidylcholine. Purified envelope membranes from cauliflower bud plastids and sycamore amyloplasts also contained a galactolipid:galactolipid galactosyltransferase, enzymes for phosphatidic acid and diacylglycerol biosynthesis, acyl-coenzyme A thioesterase, and acyl-coenzyme A synthetase. These results demonstrate that envelope membranes from nongreen plastids present a high level of homology with chloroplasts envelope membranes.
منابع مشابه
The Chloroplast Min System Functions Differentially in Two Specific Nongreen Plastids in Arabidopsis thaliana
The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In...
متن کاملThe Isolation of Proplastids from Roots of Vicia faba.
To our knowledge most living cells in higher plants contain plastids. In nongreen tissues such as primary roots, the plastids have been identified by the rather ambiguous name "proplastids." These proplastids are generally described as rather simple organelles, bounded by a double envelope and containing only a few internal membranes with a limited number of invaginations of the inner membrane ...
متن کاملPhosphate Translocators in Plastids.
During photosynthesis, energy from solar radiation is used to convert atmospheric carbon dioxide into intermediates that are used within and outside the chloroplast for a multitude of metabolic pathways. The daily fixed carbon is exported from the chloroplasts as triose phosphates and 3-phosphoglycerate. In contrast, nongreen plastids rely on the import of carbon, mainly hexose phosphates. Most...
متن کاملLeucoplast Isolation
While several aspects of primary metabolism are identical in plant and animal cells, others are distinctly different. The most prominent difference is the subcellular localization of biosynthetic reactions. Anabolism in animal and microbial cells takes place within the cytoplasm. Plant cells, however, have the anabolic reactions primarially localized within a double membrane-limited organelle, ...
متن کاملPreparation and characterization of nano-porous Polyacrylonitrile (PAN) membranes with hydrophilic surface
Polyacrylonitrile (PAN) membranes with nano-porous surface and high hydrophilicity were fabricated by addition of polyoxyethylene (40) nonylphenyl ether (IGEPAL) as an additive in the casting solution. The membranes were prepared from PAN/IGEPAL/1-Methyl-2-pyrrolidone (NMP) via phase inversion induced by immersion precipitation technique. Pure water was used as coagulation medium. The effects o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 88 3 شماره
صفحات -
تاریخ انتشار 1988